BAB II TINJAUAN PUSTAKA

2.1 Kajian Teori

2.1.1 Kualitas

Kualitas merupakan salah satu faktor penting dalam dunia bisnis dimana baik buruknya suatu bisnis dapat diukur dari kualitas produk atau jasa yang dihasilkan. Kualitas berasal dari bahasa latin "qualis" yang memiliki arti "sebagaimana kenyataannya". Dalam Kamus Besar Bahasa Indonesia, kualitas didefinisikan sebagai tingkat baik buruknya sesuatu, derajad atau mutu.

Beberapa Ahli mendefinisikan kualitas dengan beragam pendapat. Menurut Sunyoto (2012) kualitas merupakan suatu ukuran untuk menilai bahwa suatu barang atau jasa telah mempunyai nilai guna seperti yang dikehendaki atau dengan kata lain suatu barang atau jasa dianggap telah memiliki kualitas apabila berfungsi atau mempunyai nilai guna seperti yang diinginkan. Kualitas adalah keseluruhan sifat suatu produk atau pelayanan yang berpengaruh pada kemampuannya untuk memuaskan kebutuhan yang dinyatakan atau tersirat (Kotler, 2005).

Dari definisi diatas dapat disimpulkan bahwa kualitas dapat terwujud apabila suatu perusahaan dapat mengoptimalkan apa yang menjadi tujuan perusahaan sesuai dengan keinginan konsumen.

2.1.2 Pengendalian Kualitas

Pengendalian kualitas merupakan suatu aktivitas atau tindakan terencana yang dilakukan untuk mencapai, mempertahankan dan meningkatkan kualitas suatu produk dan jasa agar sesuai dengan standar yang telah ditetapkan serta dapat memenuhi kepuasaan konsumen (Andreas, 2019). Pengendalian kualitas dapat diartikan sebagai pengawasan mutu yang bertujuan untuk mempertahankan kualitas atau mutu dari barang yang dihasilkan agar sesuai dengan spesifikasi produk yang ditetapkan berdasarkan kebijaksanaan perusahaan. Menurut (Rahmawaty dkk, 2020) pengendalian kualitas dapat menurunkan tingkat kerusakan produk yang dihasilkan dan dapat mengetahui faktor penyebab terjadinya kerusakan produk cacat. Jika produk yang dikeluarkan tidak sesuai standar perusahaan maka kebijakan proses selanjutnya dilimpahkan pada perusahaan masing-masing. Tetapi, jika

produk yang dikeluarkan tidak sesuai standar jumlahnya banyak, maka perbaikan kualitas perlu dilakukan. Hal tersebut bertujuan agar perusahaan dapat konsisten menghasilkan produk yang sesuai dengan apa yang telah menjadi standar perusahaan.

2.1.3 Tujuan Pengendalian Kualitas

Pengendalian kualitas berperan penting bagi perusahan dalam menjaga dan mempertahankan kualitas produk yang dihasilkan dapat berjalan baik dan sesuai kebijakan perusahaan. Menurut Heizer & Render (2013) ada beberapa tujuan dari pengendalian kualitas yaitu:

- 1) Peningkatan kepuasan pelanggan.
- 2) Biaya dapat ditekan seminimum mungkin.
- 3) Selesai tepat pada waktunya.

Tujuan utama pengendalian kualitas adalah untuk mengetahui sejauh mana proses dan hasil produk yang dihasilkan sesuai standar yang ditetapkan perusahaan. Adapun tujuan pengendalian kualiatas secara umum menurut Heizer & Render (2013) sebagai berikut:

- 1) Spesifikasi produk akhir sesuai dengan standar mutu yang telah ditetapkan perusahaan.
- 2) Biaya desain produk, biaya inspeksi dan biaya proses produksi dapat berjalan secara efisien.
- 3) Prinsip pengendalian kualitas merupakan upaya untuk mencapai dan meningkatkan proses dilakukan secara terus-menerus untuk dianalisis agar menghasilkan informasi yang dapat digunakan untuk mengendalikan dan meningkatkan proses, sehingga proses tersebut memiliki kapabilitas untuk memenuhi spesifikasi produk yang diinginkan oleh konsumen.

2.1.4 Faktor yang Mempengaruhi Kualitas

Sebelum dilakukan pengendalian kualitas harus diketahui terdapat beberapa faktor yang mempengaruhi kualitas baik produk ataupun jasa. Menurut Sofian Assauri (dalam Sumayyah, 2020) terdapat 9 faktor yang dapat mempengaruhi kualitas produk yang biasa disebut 9M atau sembilan bidang dasar, yaitu:

1) *Market* (Pasar)

Jumlah produk baru dan berkualitas yang ditawarkan perusahaan terus bertumbuh secara terus menerus. Konsumen disarankan agar mempercayai bahwa terdapat sebuah produk yang mampu memenuhi semua kebutuhannya. Saat ini konsumen lebih cermat dalam memilih dan membeli produk yang sesuai kebutuhannya. Ruang lingkup pasar menjadi lebih besar serta secara fungsional lebih terspesialisasi dalam produk yang ditawarkan. Dengan meningkatnya jumlah perusahaan, pasar menjadi bertaraf internasional. Oleh karena itu, setiap perusahaan harus mampu menyesuaikan dengan kondisi saat ini dengan cepat.

2) Money (Uang)

Meningkatnya pesaing di dalam berbagai bidang bisnis bersamaan dengan fluktuasi ekonomi dunia berdampak menurunnya batas laba. Pada waktu yang bersamaan, kebutuhan akan otomatisasi dan pemekanisan menyebabkan pengeluaran yang besar untuk proses dan perlengkapan yang baru. Penambahan investasi pabrik harus dibayar melalui naiknya produktivitas, menimbulkan kerugian dalam jumlah besar, hal tersebut disebabkan oleh barang afkiran dan pengulangan kerja yang serius. Fakta tersebut menjadi perhatian para manajer di bidang biaya kualitas sebagai salah satu dari "titik lunak" tempat biaya operasional dan kerugian dapat diturunkan untuk memperbaiki laba.

3) *Management* (Manajemen)

Tanggung jawab kualitas telah didistribusikan melalui beberapa tim khusus. Pada saat ini bagian pemasaran dengan fungsi perencanaan produknya, harus dapat membuat persyaratan produk. Bagian perancangan bertanggung jawab untuk membuat produk yang memenuhi persyaratan tersebut. Bagian produksi mengembangkan dan memperbaiki kembali proses agar dapat memberikan kemampuan yang baik dalam menciptakan sebuah produk sesuai dengan rancangan. Bagian pengendalian kualitas merencanakan pengukuran kualitas pada seluruh aliran proses yang mampu menjamin bahwa hasil akhir produk memenuhi persyaratan kualitas. Setelah produk di tangan konsumen merupakan bagian terpenting dari keseluruhan produk. Hal ini membuat beban manajemen puncak kesulitan

dalam mengalokasikan tanggung jawab yang tepat untuk mengevaluasi penyimpangan dari standar kualitas.

4) Man (Manusia)

Pertumbuhan pesat dalam ilmu pengetahuan teknis dan pembuatan seluruh bidang baru seperti elektronika komputer, menciptakan permintaan dalam jumlah besar akan karyawan dengan pengetahuan khusus. Dalam kondisi tersebut dapat menciptakan permintaan untuk ahli sistem teknik yang akan mendorong semua bidang tertentu untuk Bersama-sama dalam merencanakan, menciptakan dan mengoperasikan berbagai sistem yang akan menciptakan hasil yang diinginkan.

5) *Motivation* (Motivasi)

Penelitian tentang motivasi bagi tenaga kerja menunjukkan bahwa pekerja memerlukan sesuatu yang dapat memperkuat rasa keberhasilan di dalam pekerjaan mereka dan pengakuan secara pribadi bahwa mereka memerlukan apresiasi atas tercapainya tujuan perusahaan, seperti memperoleh hadiah dalam bentuk tambahan upah.

6) *Material* (Bahan)

Disebabkan oleh biaya produksi dan persyaratan kualitas, para ahli teknik memilih bahan dengan batasan yang lebih ketat dari pada sebelumnya. Akibatnya spesifikasi bahan menjadi leboh besar dan beranekaragam.

7) *Machine and Mecanization* (Mesin dan Mekanik)

Permintaan perusahaan untuk mencapai penurunan biaya dan volume produksi untuk memuaskan konsumen telah mendorong penggunaan peralatan pabrik menjadi lebih rumit dan tergantung pada kualitas bahan yang digunakan. Kualitas yang baik menjadi faktor kritis dalam memelihara waktu kerja mesin agar fasilitasnya dapat digunakan sepenuhnya.

8) Modern Information Metode (Metode Informasi Modern)

Evolusi teknologi komputer memungkinkan untuk mengumpulkan, menyimpan, mengambil kembali, memanipulasi informasi pada skala yang tidak terbayangkan sebelumnya. Teknologi informasi yang baru ini menyediakan cara untuk mengendalikan mesin dan proses selama proses produksi dan mengendalikan produk bahkan setelah produk sampai ke konsumen.

9) Mounting Product Requirement (Persyaratan Proses Produksi)

Kemajuan yang pesat dalam perancangan produk, memerlukan pengendalian yang lebih ketat pada seluruh proses pembuatan produk. Meningkatnya persyaratan prestasi yang lebih tinggi bagi produk menekankan pentingnya keamanan dan keandalan produk.

2.1.5 Proses Pengeringan

Pengeringan mie kasar dibagi menjadi 2 proses, yaitu pengeringan dengan cara manual dan menggunakan oven. Pada proses pengeringan manual mie diletakkan di atas papan kemudian dijemur di bawah sinar matahari langsung dengan waktu paling lama satu hari tergantung kondisi cuaca. Sedangkan pengeringan dengan oven, mie diletakkan di papan kemudian dimasukkan ke dalam ruangan oven yang seluruhnya sudah dilapisi dengan aluminium foil. Hanya dibutuhkan waktu pengeringan dengan oven.

Dalam masing-masing prosesnya terdapat beberapa kelebihan dan kelemahan yang ditunjukkan pada tabel berikut:

Tabel 2. 1 Kelebihan dan Kekurangan Proses Pengeringan

Sinar Matahari	Oven
Waktu pengeringan 5 jam	Waktu pengeringan 8 jam
Mie lebih kuat	Mie mudah patah
Sangat bergantung cuaca	Tidak bergantung cuaca
Mudah merah dan berjamur	Tidak merah dan berjamur

2.1.6 Konsep Six Sigma

Menurut Gasperz (2002) yang termuat dalam bukunya yang berjudul *Pedoman Implementasi Six Sigma Terintegrasi dengan ISO 9001:2000, MBNQA dan HACPP six sigma* merupakan suatu visi peningkatan kualitas menuju target 3,4 kegagalan per sejuta kesempatan (DPMO) untuk setiap transaksi produk barang dan jasa. Semakin tinggi target sigma yang dicapai, maka kinerja sistem industri akan semakin baik. *Six sigma* juga dianggap sebagai strategi terobosan yang memungkinkan perusahaan melakukan peningkatan luar biasa di tingkat bawah.

Terdapat 6 aspek kunci yang perlu diperhatikan dalam aplikasi konsep six sigma, yaitu:

- 1) Identifikasi pelanggan.
- 2) Identifikasi produk.
- 3) Identifikasi kebutuhan dalam memproduksi produk untuk pelanggan.
- 4) Definisi proses.
- 5) Menghindari kesalahan dalam proses dan menghilangkan semua pemborosan yang ada.
- 6) Tingkatkan proses secara terus-menerus menuju taget six sigma.

Dalam buku Six Sigma (2002) apabila konsep six sigma akan diterapkan dalam bidang manufacturing, maka perlu diperhatikan enam aspek berikut:

- 1) Identifikasi karakteristik produk yang memuaskan pelanggan.
- 2) Klasifikasikan semua karakter kualitas sebagai CTQ (critical-to-quality) individual.
- 3) Menentukan apakah setiap CTQ tersebut dapat dikendalikan melalui pengendalian material, mesin, proses kerja, dll.
- 4) Menentukan batas maksimum toleransi setiap CTQ sesuai keinginan pelanggan dengan menentukan nilai USL dan LSL.
- 5) Menentukan maksimum variasi proses untuk setiap CTQ
- 6) Mengubah desain produk dan/atau proses sedemikian rupa agar mencapai nilai target *six sigma*.

2.1.7 DMAIC

Model six sigma yang digunakan dalam penelitian ini adalah metode DMAIC yang terdiri dari lima tahap, yaitu sebagai berikut:

1) Define

Fase *Define* merupakan langkah awal dari program peningkatan kualitas six sigma yang diperlukan untuk menerapkan peningkatan pada setiap proses bisnis penting (Gazper,2005). Tujuan *define* adalah untuk mengidentifikasi permasalahan utama.

2) Measure

Fase *Measure* adalah fase mengukur tingkat kinerja proses saat ini. Pada tahap ini terdapat 2 tahap pengukuran yaitu tahap pengukuran

menggunakan *control chart* dan pengukuran tingkat six sigma. Langkah pertama yang harus dilakukan dalam pengendalian kualitas statistik adalah membuat *check sheet*. *Check sheet* merupakan suatu daftar yang mencakup faktor-faktor yang ingin diselidiki. Setelah dilakukan pengumpulan data menggunakan *check sheet* dilakukan pengukuran menggunakan control chart untuk menghitung nilai ratarata kerusakan produk dengan rumus sebagai berikut:

$$P = \frac{np}{n}$$

(2.1)

Keterangan:

p : rata-rata ketidak sesuaian

np : jumlah gagal dalam sub grup

n : jumlah yang diperiksa dalam sub grup

Sub grup : hari ke-

Selanjutnya hitung nilai rata-rata produk akhir atau *Central Line* (CL) dengan rumus:

$$CL = \frac{\sum np}{\sum n} \tag{2.2}$$

Keterangan:

 $\sum np$: Jumlah total defect

 $\sum n$: Jumlah total yang diperiksa

Kemudian mencari nilai UCL dan LCL dengan rumus:

UCL =
$$p + 3\sqrt{\frac{p(1-p)}{n}}$$
(2.3)

LCL = $p - 3\sqrt{\frac{p(1-p)}{n}}$
(2.4)

Keterangan:

P : Rata-rata ketidaksesuaian produk

N : Jumlah produksi

Jika LCL ≤ 0 maka LCL dianggap = 0

Selanjutnya dilakukan perhitungan nilai DPMO dan nilai sigma. Nilai DPMO dapat dihitung menggunakan rumus sebagai berikut:

$$DPMO = \frac{\text{Jumlah Produk Cacat}}{\text{Jumlah Produk yang diperiksa} \times \text{CTQ Potensial}} \times 1000000 \quad (2.5)$$

Setelah mendapatkan nilai DPMO kemudian dilakukan perhitungan nilai sigma menggunakan tool software Microsoft Excel dengan formula sebagai berikut:

Nilai sigma (
$$\sigma$$
) = NORMSIV $\left(\frac{10^6 - DPMO}{10^6} + 1,5\right)$ (2.6)

3) Analyze

Pada tahap ini dilakukan analisis faktor penyebab defect yang dihasilkan selama proses pengeringan dilakukan menggunakan diagram pareto, *fishbone diagram* dan FMEA. Diagram pareto digunakan untuk menganalisis produk cacat tertinggi. Kemudian *Fishbone* diagram digunakan untuk mengetahui faktor-faktor penyebab defect dilanjutkan pembobotan *defect* menggunakan FMEA.

4) Improve

Pada tahap ini akan menyajikan usulan perbaikan yang didapatkan dari interprestasi hasil. Setelah akar penyebab utama teridentifikasi, maka perlu dilakukan rencana tindakan perbaikan untuk meningkatkan pengendalian kualitas. Untuk tahap *improve* peneliti menggunakan *Kaizen Five-M Check List. Kaizen Five-M Check List* dimana merupakan sebuah teknik analisa perbaikan yang berfokus pada 5 faktor utama yang terlibat dalam proses, yaitu *man* (orang), *machine* (mesin), *material* (material), *methods* (metode) dan *environmental* (lingkungan).

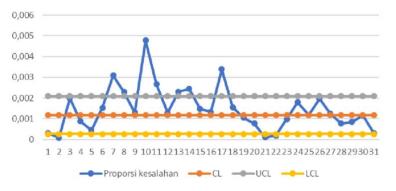
5) Control

Pada fase *control* dilakukan pengendalian kinerja proses untuk meningkatkan kapabilitas proses menuju target *six sigma* dan meminimalisir cacat tidak muncul kembali.

2.1.8 Tools Six Sigma

Tools atau alat six sigma yang biasa digunakan dalam pengendalian kualitas di perusahaan-perusahaan industri adalah sebagai berikut:

1) Diagram SIPOC


Tools ini digunakan untuk menunjukkan aktivitas dalam proses bisnis dengan kerangka kerja dari proses bisnis.

SIPOC sendiri didefinisikan sebagai berikut :

- a) Supplier, adalah organisasi, orang-orang, system atau sumber lain untuk material, informasi, dan sumber daya lainnya yang ditransformasikan dalam suatu proses tertentu.
- b) Input, adalah material, informasi, dan sumber daya lainnya yang disediakan oleh supplier dan ditransformasikan dalam suatu proses tertentu.
- c) Process, adalah suatu kumpulan langkah dan aktivitas yang mentransformasikan input menjadi output.
- d) Output, adalah suatu produk atau jasa yang dihasilkan dari aktivitas process yang siap untuk digunakan konsumen.
- e) Customer adalah orang-orang, organisasi, system atau proses-proses yang menerima dan menikmati output.

2) Peta Kendali (Control Chart)

Peta kendali pertama kali dikembangkan oleh Dr. Walter A. Shewart pada tahun 1924 sewaktu bekerja di Bell Telephone Laboratories AS. Diagram ini digunakan untuk menentukan suatu kondisi, proses atau hasil proses berada dalam keadaan stabil dan sesuai standar yang ada atau tidak. Apabila semua data berada dalam batas kendali yang ada, maka proses dapat dilakukan dalam keadaan stabil.

Gambar 2.1 Peta Kendali P

Peta kendali memiliki komponen yang dijadikan sebagai acuan dasar apakah suatu kualitas atau proses sudah berjalan baik atau tidak. Berikut ini komponen dalam peta kendali.

- a) *Upper Control Limit* (UCL) atau batas kendali atas merupakan garis batas atas (*Upper Limit*) untuk suatu penyimpangan.
- b) *Central Line* (CL) atau garis pusat tengah merupakan garis yang melambangkan tidak adanya penyimpangan dari karakteristik sampel.
- c) Lower Control Limit (LCL) atau batas kendali bawah merupakan garis batas bawah (lower limit) untuk suatu penyimpangan dari karakteristik sampel.
- d) Warning Limit adalah batas peringatan.

Beberapa jenis peta kendali yaitu sebagai berikut:

a. Peta kendali p

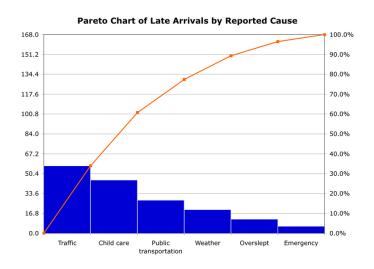
Peta kendali *p* merupakan bagan yang digunakan untuk mengamati bagian yang ditolak karena tidak memenuhi spesifikasi. Bagian yang ditolak dapat didefinisikan sebagai rasio dari banyaknya barang yang tidak sesuai yang ditemukan dalam pemeriksaan terhadap total barang yang benar benar diperiksa.

b. Peta kendali *np*

Bagan *np* digunakan untuk mengevaluasi bilangan kerusakan yang terjadi dalam suatu proses produksi.

c. Peta kendali c

Peta kendali *c* digunakan untuk melihat jumlah ketidaksesuaian yang menyebabkan kecacatan atau ketidaksempurnaan suatu produk

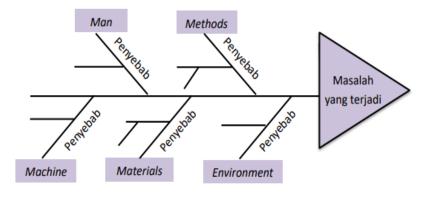

d. Peta kendali u

Peta kendali u digunakan untuk mengidentifikasi jumlah ketidaksesuaian yang terdapat di dalam suatu unit produk.

3) Diagram Pareto

Diagram Pareto merupakan grafik batang yang menunjukan masalah berdasarkan urutan banyaknya kejadian. Prinsip dari Diagram Pareto adalah 80/20 atau 80% dari masalah (cacat produk) diakibatkan oleh 20% penyebab. Masalah yang paling banyak terjadi ditunjukkan

oleh grafik batang pertama yang tertinggi serta ditempatkan pada sisi paling kiri, dan seterusnya sampai masalah yang paling sedikit terjadi ditunjukkan oleh grafik batang terakhir yang terendah serta ditempatkan pada sisi paling kanan (Gaspersz, 2012).



Gambar 2.2 Diagram Pareto

4) Fishbone Diagram

Diagram tulang ikan atau disebut juga sebab-akibat atau *Ishikawa Diagram* merupakan metode analisis yang dapat digunakan untuk mengidentifikasi akar penyebab masalah kualitas dan check point yang meliputi empat jenis bahan atau peralatan, tenaga kerja, dan metode (Vandy, 2019).

Diagram ini pertama kali dikembangkan pada tahun 1950 oleh Dr. Kaoru Ishikawa yang merupakan seorang pakar kualitas menggunakan uraian grafis dan unsur-unsur proses untuk menganalisa sumber-sumber potensial dari penyimpangan proses.

Gambar 2. 3 Fishbone Diagram

5) FMEA

Failure Mode Effect Analysis (FMEA) merupakan suatu metode perbaikan dari sebuah desain, proses, sistem atau servis yang mengalami kegagalan dengan dibuat langkah penanganannya (Yumaida, 2011). FMEA berperan mengidentifikasi prioritas perbaikan terhadap jenis kegagalan yang terjadi. Dalam menentukan proritas perbaikan, dilakukan pembobotan nilai dengan skala pada masingmasing jenis defect berdasarkan: (1) tingkat kefatalan (severity), (2) frekuensi terjadinya (occurance), (3) serta tingkat deteksi (detection). Kemudian dilanjutkan dengan menghitung nilai RPN (Risk Priority Number) dengan melakukan perkalian antara severity, occurance, dan detection. Pembobotan atau penilaian pada tiap variabel yaitu severity, occurance, dan detection adalah sebagai berikut:

a. Severity

1-10 (Semakin besar angka *severity*, maka semakin tinggi tingkat keparahan).

Tabel 2.2 Pembobotan Severity

Angka Rating 2-3 Rendah		Keterangan	
		Menimbulkan	
		ketidaknyamanan pada proses	
		berikutnya	
4-6 Moderat		Berakibat pada perbaikan diluar	
		jadwal atau kerusakan peralatan	
7-8 Tinggi		Berpengaruh pada kegagalan	
		proses selanjutnya	
9-10	Sangat tinggi	tinggi Berpengaruh pada keselamatan	

b. Occurance

1-10 (semakin besar angka *occurance*, maka semakin tinggi peluang terjadinya kegagalan suatu proses).

Tabel 2.3 Pembobotan Occurance

Angka	Rating	Keterangan
1	Peluang kecil	Cpk > 1.67

2-5	Kemungkinan kecil	Cpk > 1.33	
6-7	Kemungkinan sedang	Cpk > 1.00	
8-9	Kemungkinan besar	Proses keluar dari batas	
		control	
10	Kemungkinan sangat	Kegagalan tidak	
10	Remangkman sangat	Regagaian tidak	

c. Detection

1-10 (semakin besar angka *detection*, maka semakin rendah tingkat keandalan mendeteksi suatu kegagalan dalam suatu proses).

Tabel 2.4 Pembobotan Detection

Angka	Rating	Keterangan	
1	Sangat tinggi	Keandalan deteksi hampir	
		100%	
2-5	Tinggi	Keandalan deteksi lebih dar	
		99.8%	
6-8	Sedang	Keandalan deteksi sekitar	
		98%	
9	Rendah	Keandalan deteksi lebih dari	
		90%	

Tujuan FMEA menurut Carlson (2014) adalah sebagai berikut:

- a. Mengidentifikasi dan memahami moda kegagalan potensial dan penyebab dan efek kegagalan pada sistem atau pengguna akhir untuk produk atau proses tertentu.
- b. Menilai resiko dengan moda kegagalan yang teridentifikasi, efek dan penyebab, serta memprioritaskan pokok permasalahan untuk diberi tindakan perbaikan.
- c. Mengidentifikasi dan melaksanakan tindakan korektif untuk mengatasi masalah yang paling serius.
- 10 langkah proses FMEA menurut McDermott dkk (2009) ditunjukkan pada tabel 2.5

Tabel 2.5 Sepuluh Langkah FMEA

Langkah 1	Meninjau proses atau produk
Langkah 2	Melakukan brainstorming terhadap moda kegagalan potensial
Langkah 3	Mendaftar potensi efek yang ditimbulkan untuk setiap moda kegagalan
Langkah 4	Menetapkan peringkat severity untuk setiap efek yang ditimbulkan
Langkah 5	Menetapkan peringkat occurrence untuk setiap efek yang ditimbulkan
Langkah 6	Menetapkan peringkat detection untuk setiap efek yang ditimbulkan
Langkah 7	Menghitung Risk Priority Number untuk setiap efek yang ditimbulkan
Langkah 8	Memprioritaskan moda kegagalan yang akan ditindaklanjuti
Langkah 9	Mengambil tindakan untuk menghilangkan atau mengurangi moda kegagalan yang beresiko tinggi
Langkah 10	Menghitung hasil Risk Priority Number setelah moda kegagalan dikurangi atau dihilangkan

A. Kaizen Five-M Check List

Kaizen Five-M Check List merupakan salah satu alat implementasi dari kaizen. Kaizen Five-M Check List adalah sebuah teknik analisa improve yang berfokus pada 5 faktor kunci yang terlibat dalam proses, yaitu man (orang), machine (mesin), material (material), methods (metode) dan environmental (lingkungan) (Alisa dkk,2022)

2.2 Penelitian Terdahulu

Berikut dibawah ini tabel penelitian terdahulu.

Tabel 2.6 Penelitian Terdahulu

No.	Penulis	Judul Penelitian	Metode	Hasil dan Pembahasan	Perbedaan Penelitian
1	Rayhan	Analisis Pengendalian	DMAIC	Pada penelitian ini, peneliti	- Objek yang diteliti dalam
	(2022)	Kualitas Nobashi Eby		melakukan perhitungan terhadap	penelitian sebelumnya adalah
		Pada Proses Stretching		nilai sigma dan menentukan	produk udang sedangkan
		dengan Metode DMAIC		penyebab serta akibat dari produk	dalam penelitian ini adalah
				defect untuk memberikan saran	produk mie.
				atau rekomendasi terhadap	- Pada tahap improve
				peningkatan kualitas produk. Hasil	penelitian sebelumnya
				penelitian menunjukkan bahwa	menggunakan tools teori dua
				size 26-30, 2LX, dan 2L OIE L	faktor Herzberg sedangkan
				OIE memiliki nilai sigma secara	dalam penelitian ini
				berturut 1.31, 1.51, dan 1,66.	menggunakan tools Kaizen
				dengan motivasi tenaga kerja	Five-M Checklist.
				sebagai faktor penyebab defect	
				terbanyak. Oleh karena itu, peneliti	
				memberikan usulan yaitu :	
				perusahaan tersebut dapat	
				mengkaji ulang terkait gaji tenaga	

		ı				
					kerja serta pemberian kesempatan	
					bagi tenaga kerja yang memiliki	
					kompetensi serta pengalaman	
					cukup untuk mendapatkan	
					kenaikan jabatan.	
2	. Gu	una, A	Analisis Kualitas Produk	DMAIC	Hasil dari penelitian ini,	- Objek yang diteliti dalam
	(20	023)	Roti Isi Cokelat di		didapatkan penyebab cacat	penelitian sebelumnya adalah
			Perusahaan Makanan Siap		underweight yaitu faktor manusia	produk roti sedangkan dalam
			Saji Menggunakan		kesalahan operator dalam	penelitian ini adalah produk
			Metode DMAIC		melakukan setting mesin	mie.
					pemotong adonan dan tidak	-Pada tahap improve
					melakukan pengecekan kembali	penelitian sebelumnya
					berat adonan secara rutin dengan	menggunakan 5W+1H
					nilai RPN (Risk Priority Number)	sedangkan dalam penelitian
					sebesar 48. Selanjutnya dilakukan	ini menggunakan tools
					perbaikan menggunakan tabel	Kaizen Five-M Checklist.
					5W+1H yaitu dengan melakukan	
					briefing awal shift semua operator	
					agar melakukan settingan dengan	
					benar dan secara rutin melakukan	
					pemeriksaan dicatat ke dalam	
				l	1	

				checksheet pemeriksaan berat	
				hasil potong adonan agar mudah	
				untuk dilakukan proses	
				monitoring. Berdasarkan hasil	
				perbaikan tersebut didapati untuk	
				presentase cacat mengalami	
				penurunan dari sebelum perbaikan	
				sebesar 2,40% menjadi 0,79%	
3	Rahayu, P,	Peningkatan Pengendalian	Six	Pada penelitian ini, peneliti	- Objek yang diteliti dalam
	Merita, B	Kualitas Produk Roti	Sigma	melakukan perhitungan nilai	penelitian sebelumnya adalah
	(2020)	dengan Metode Six Sigma	New &	sigma berada di angka 3,97.	produk roti sedangkan dalam
		Menggunakan New & Old	Old 7	terdapat 3 jenis cacat yaitu	penelitian ini adalah produk
		7 Tools	Tools	pemotongan adonan tidak sama	mie.
				sehingga jumlah bagian adonan	-Penelitian sebelumnya
				berbeda, terdapat adonan yang	sampai pada tahap control
				tidak memenuhi berat timbangan	sedangkan penelitian hanya
				dan bentuk akhir produk yang	sebatas usulan perbaikan.
				tidak seragam. Oleh karena itu,	
				peneliti memberikan saran agar	
				perusahaan diharapkan dapat	
				menerapkan metode terstruktur	

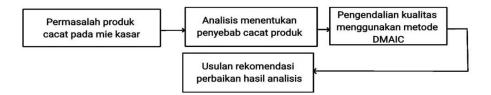
				dalam pelaksanaan pengendalian	
				kualitas, salah satunya dengan	
				metode 7 tools yang dapat	
				diterapkan secara bertahap untuk	
				mengoptimalkan pengendalian	
				kualitas	
4	Maghfiro, Y,	Pengendalian Kualitas	DMAIC	Berdasarkan hasil penelitian	-Objek dalam penelitian
	Damat,	Proses Pengolahan Teh		terhadap cacat produk pada PT.	sebelumnya adalah teh hitam
	Hanif, A	Hitam Ortodox		Pagilaran menggunakan metode	sedangkan dalam penelitian
	(2023)	Menggunakan Metode		DMAIC (define, measure,	ini adalah mie kasar
		DMAIC Di PT.Pagilaran		analysis, improve, control) dapat	-Lokasi dalam penelitian
				disimpulkan bahwa penyebab dari	sebelumnya di PT. Pagilaran
				timbulnya cacat produk padda	Batang sedangkan dalam
				proses pengolahan teh hitam	penelitian ini di PT Mie Ho
				dipengaruhi 5 faktor yaitu man	Kie San Banyumas
				(manusia), mechine (mesin),	
				materials (material), methods	
				(metode) dan mileu (lingkungan)	
				sehingga perlu dilakukan	
				peningkatan untuk meningkatkan	
				kualitas menggunakan alat berupa	

				five M-checklist sehingga dapat	
				dilakukan upaya perbaikan untuk	
				mengurangi penyebab terjadinya	
				cacat produk.	
5	Terawati, S,	Implementasi Metode	DMAIC	Hasil dari penelitian ini	Perbedaan Penelitian:
	Wiguna, W	DMAIC (Define,		teridentifikasi masih tingginya	-Objek dalam penelitian
	(2021)	Measure, Analyze		kecacatan pada proses produksi di	sebelumnya sepatu sedangkan
		Improve, Control) untuk		antaranya bonding yang terjadi	dalam penelitian ini adalah
		Mengurangi Cacat		pada produk sepatu mencapai	produk mie.
		Bonding Sepatu Di		27.79% dari total cacat sepatu.	-Pada tahap improve
		Gedung 2 (Dua) pada PT.		Penyebab terjadinya cacat bonding	penelitian sebelumnya
		Parkland World Indonesia		adalah operator tidak konsisten	menggunakan tools 5W+1H
				dalam proses lem upper ke outsole,	sedangkan dalam penelitian
				pemakaian tooling tidak sesuai	ini menggunakan Kaizen
				dengan SOP, aplikasi proses lem	Five-M Checklist.
				upper ke outsole kurang tebal dan	
				tidak rata, dan terlalu banyak WIP	
				di tempat kerja. Oleh karena itu,	
				peneliti memberi usulan agar	
				perusahaan melakukan	
				pengecekan dan pengontrolan	

				selama proses produksi	
				berlangsung.	
6	Fauzi,	Analisis Kualitas Produk	DMAIC	Hasil dari penelitian diperoleh	-Objek dalam penelitian
	Ichsan ,A,	Karkas Ayam	dan	kecacatan yang paling dominan	sebelumnya produk ayam
	Andung,	Menggunakan Metode	FMEA	terjadi pada proses produksi karkas	sedangkan dalam penelitian
	J(2023)	DMAIC dan FMEA		ayam adalah cacat patah tulang	ini adalah produk mie.
				yaitu sebanyak 44% dari total kecacatan yaitu sebanyak 70372pcs. Hasil analisis FMEA menunjukkan komponen paling besar dengan nilai RPN sebesar 168 cacat produk disebabkan oleh faktor mesin. Usulan perbaikan yang disarankan kepada perusahaan yaitu dengan melakukan pembaruan mesin yang lebih baik atau melakukan	-Penelitian sebelumnya berfokus pada proses produksi karkas ayam sedangkan dalam penelitian ini berfokus pada proses pengeringan mie kasar.
7	A1J: T	Anglicia Dengan dell'err	DMAIC	maintenance secara rutin	Objek delem magalitica
7	Aldi, L,	Analisis Pengendalian		Hasil penelitian ini diperoleh	-Objek dalam penelitian
	Budiharjo,	Kualitas Produk Sepatu	dan	jenis cacat pada sepatu, terdiri	sebelumnya produk sepatu
		Adidas Dengan Metode	FMEA	dari 3 jenis cacat yaitu bigreat,	

	Asep, R	DMAIC dan	FMEA Di		jahitan, pengeleman (kekuatan	sedangkan dalam penelitian
	(2023)	PT.Parkland	World		pengeleman sol). Dari 20649	ini adalah produk mie.
		Indonesia-Cik	kande		jumlah sepatu yang diperiksa	- Pada tahap improve dalam
					didapat cacat paling dominan cacat	penelitian sebelumnya
					bigreat (nodalem), sebesar 556 atau	menggunakan hanya
					42% sehingga didapat rata-rata	menggunakan tools FMEA
					nilai sigmanya sebesar 3.50 sigma.	sedangkan dalam penelitian
					Saran yang diberikan adalah	ini menggunakan tools FMEA
					memberikan pelatihan kepada	dan Kaizen Five-M Checklist.
					operator agar kemampuan dan	
					pemahaman operator menjadi	
					lebih baik, melakukan	
					pengawasan terhadap operator	
					pada saat bekerja,melakukan	
					pengecekan dan perawatan secara	
					berkala terhadap mesin-mesin	
					yang digunakan.	
8	Widyarto,	Analisis I	Pengendalian	Six	Pada penelitian ini terdapat	Perbedaan Penelitian
	W, Firdaus,	Kualitas A	ir Minum	Sigma	beberapa permasalahan pada	-Objek dalam penelitian
	A,	Dalam	Kemasan	DMAIC	kualitas galon. Setelah dilakukan	sebelumnya adalah produk air
					perhitungan nilai sigma berada	minum sedangkan dalam

	Kusumawati,	Menggunakan Metode Six		pada angka 4.84 dengan faktor	penelitian ini adalah produk
	A (2019)	Sigma		dominan kecacatan yaitu galon	mie.
				bocor dan pecah. Oleh karena itu,	-Penelitian sebelumnya
				peneliti memberikan usulan	berfokus pada kemasan galon
				perbaikan yaitu dilakukan	sedangkan dalam penelitian
				pengecekan dengan memberi	ini berfokus pada proses
				tanda pada galon yang memiliki	pengeringan mie kasar.
				tambalan agar tidak tertukar pada	
				penumpukkan, dan pada saat	
				pemilihan galon, hendaknya	
				operator memperhatikan tahun	
				galon untuk memastikan bahwa	
				galon yang digunakan belum	
				kadaluarsa.	
9	Ramadian,	Pengendalian Kualitas	DMAIC	Pada penelitian ini, berdasarkan	Perbedaan Penelitian
	D, Reza, A,	Proses Pengeringan Teh		hasil pengolahan dan analisis data	-Objek dalam penelitian
	Mutiara, Y	Hitam (Orthodoks)		ditemukan cacat produk teh hitam	sebelumnya adalah teh hitam
	(2022)	Menggunakan Metode		pada proses pengeringan. Dengan	sedangkan dalam penelitian
		DMAIC di PT.		faktor penyebab pertama yaitu	ini adalah mie kasar
		Perkebunan Nusantara		material yang digunakan, faktor	-Lokasi dalam penelitian
				kedua yaitu manusia atau operator,	sebelumnya di PT.


	VIII Kebun Gedeh Mas,	dan faktor ketiga adalah mesin	Perkebunan Nusantara VIII
	Cianjur.	yang digunakan. Oleh karena itu,	Kebun Gedeh Mas Cianjur
		peneliti memberi saran perbaikan	sedangkan dalam penelitian
		agar perusahaan memperhatikan	ini di PT Mie Ho Kie San
		waktu gilir petik dengan tepat	Banyumas
		waktu, dan sebaiknya operator	
		lebih disiplin lagi dalam	
		mengontrol suhu, serta dilakukan	
		pengecekan mesin secara berkala.	

10	Mustaniroh,	Analisis Pengendalian DMAIC	Pada penelitian ini, dilakukan	Perbedaan Penelitian
	S, Nadya, P	Kualitas Produk Kripik FMEA	perhitungan nilai sigma berada di	-Objek dalam penelitian
	(2021)	Tempe Deny	angka 1,88 pada proses	sebelumnya adalah produk
		Menggunakan Pendekatan	penggorengan. Akar masalah dari	kripik tempe sedangkan
		Six Sigma DMAIC	proses penggorengan meliputi	dalam penelitian ini
		terintegrasi fuzzy FMEA	tenaga kerja yang kurang paham	menggunakan produk mie.
			proses produksi, minimalnya	-Lokasi dalam penelitian
			pengawasan produksi,	sebelumya di UKM Deny
			ketidakmampuan tenaga kerja	Malang sedangkan dalam
			dalam menjalankan metode	penelitian ini di PT Mie Ho
			penggorengan dengan baik dan	Kie San Banyumas.
			frekuensi penggunaan minyak	-Pada tahap improve dalam
			goreng dan alat peniris yang masih	penelitian sebelumnya
			sederhana. Oleh karena itu,	menggunakan tools Fuzzy
			peneliti memberi saran atau usulan	Fmea sedangkan dalam
			perbaikan yaitu membuat	penelitian ini menggunakan
			perencanaan SDM untuk	tools FMEA dan Kaizen Five-
			pemenuhan tenaga kerja melalui	M Checklist.
			pelatihan, penjadwalan	
			pengawasan produksi, dan	
			penambahan tenaga kerja terampil.	

11	Dini F R	Analisis Pengendalian	DMAIC
	(2023)	Kualitas Guna	
		Meminimalisir Kecacatan	
		Produk Mie Kasar Di PT.	
		Mie Ho Kie San Dengan	
		Menggunakan Metode	
		DMAIC	

2.3 Kerangka Pemikiran

Kerangka pemikiran dalam penelitian ini menggambarkan mengenai pengendalian kualitas di PT Mie Ho Kie San menggunakan metode DMAIC. Penelitian ini berfokus pada produk mie kasar di divisi pengeringan. Metode DMAIC digunakan untuk mengidentifikasi penyebab *defect* produk. Kemudian dilakukan perhitungan DPMO dan level sigma serta analisis data menggunakan diagram pareto, *fishbone* diagram dan FMEA sehingga akan diketahui data akar masalah utama dari produk cacat dan merekomendasikan usulan perbaikan yang sesuai dengan permasalahan yang terjadi. Hasil dari analisis data tersebut dapat digunakan perusahaan sebagai bahan evaluasi hasil kinerja proses pada tahap pengeringan.

Gambar 2.4 Kerangka Pemikiran