Ginanjar, Rizqi Setiani (2023) IMPLEMENTASI BUSINESS INTELLIGENCE DAN PREDIKSI MENGGUNAKAN ARTIFICIAL NEURAL NETWORK (ANN) PADA PENJUALAN PLANET HELM. Other thesis, Universitas Nahdlatul Ulama Al Ghazali Cilacap.
HALAMAN DEPAN.pdf
Download (1MB)
BAB 1.pdf
Download (79kB)
BAB 2.pdf
Download (330kB)
BAB 3.pdf
Download (1MB)
BAB 4.pdf
Restricted to Registered users only
Download (4MB) | Request a copy
BAB 5.pdf
Restricted to Registered users only
Download (57kB) | Request a copy
DAFTAR PUSTAKA.pdf
Download (83kB)
LAMPIRAN.pdf
Download (1MB)
SKRIPSI FULL GINANJAR RS.pdf
Restricted to Registered users only
Download (8MB) | Request a copy
Abstract
Penjualan menjadi salah satu hal yang penting dalam berbisnis untuk meningkatkan profit perusahaan. Pasar bisnis yang semakin kompetitif, memberikan tantangan bagi perusahaan untuk bisa beradaptasi dengan kondisi pasar yang berubah ubah, dan kebutuhan pembeli yang beragam. Untuk itu perusahaan harus bisa merespon secara cepat dan tepat dalam menghadapi adaptasi lingkungan bisnis dan mempertimbangkan biaya yang dikeluarkan agar tetap kondusif dan memiliki strategi dalam pengambilan keputusan, dapat memberikan solusi dalam perubahan situasi pasar saat ini, sehingga perusahaan dapat bertahan dalam jangka panjang. Business intellegence sebagai landasan untuk menetapkan keputusan suatu perusahaan di perlukan informasi yang cepat, tepat dan mudah dipahami berdasarkan data data yang diperoleh. Prediksi penjualan diperlukan agar dapat membantu perusahaan dalam menentukan jumlah merk produk yang seharusnya disediakan di masa yang akan datang dan dapat menjadi strategi bisnis perusahaan. Implementasi business intellegence pada penelitian ini menggunakan metode Online Analytical Processing (OLAP) yaitu pemakaian Extraction Transformation Loading (ETL), pembuatan datawarehouse, menganalisa data untuk user dan user interface berupa visualisasi informasi menggunakan framework Laravel dan prediksi penjualan menggunakan Artificial Neural Network (ANN), yang dapat membantu memperkirakan penjualan yang akan datang dan mempermudah dalam menentukan stok yang seharusnya tersedia atau tidak. Penelitian ini terdiri dari data penjualan, data pembelian, dan stok. Hasil penelitian ini berupa tampilan dashboard terdiri dari jumlah kategori, jumlah pemasok, jumlah merk produk, jumlah penjualan, notifikasi permintaan merk produk oleh customer, daftar merk produk dengan stok kurang dari 7, grafik merk terpopuler, rata-rata penjualan bulanan, penjualan bulanan, dan hasil prediksi terhadap realitas penjualan, sehingga dapat membantu pimpinan dalam pengambilan keputusan, menjaga ketersediaan jumlah barang, dan menganalisa trend.
====================================================================================
Sales are one of the important things in business to increase company profits. The business market is increasingly competitive, providing challenges for companies to be able to adapt to changing market conditions and the diverse needs of buyers. For this reason, companies must be able to respond quickly and precisely in dealing with business environment adaptation and consider the costs incurred so that it remains conducive and have a strategy in decision making, able to provide solutions to changes in the current market situation, so that the company can survive in the long term. Business intelligence as a basis for making decisions for a company requires information that is fast, precise and easy to understand based on the data obtained. Sales predictions are needed to help companies determine the number of product brands that should be provided in the future and can become the company's business strategy. The implementation of business intelligence in this research uses the Online Analytical Processing (OLAP) method, namely using Extraction Transformation Loading (ETL), creating a data warehouse, analyzing data for users and user interfaces in the form of information visualization using the Laravel framework and sales predictions using Artificial Neural Network (ANN), which can help estimate future sales and make it easier to determine which stock should be available or not. This research consists of sales data, purchase data and stock. The results of this research are in the form of a dashboard display consisting of number of categories, number of suppliers, number of product brands, number of sales, notification of product brand requests by customers, list of product brands with less than 7 stocks, graphs of the most popular brands, average monthly sales, monthly sales, and prediction results on sales realities, so that they can help leaders in making decisions, maintaining the availability of goods, and analyzing trends.
Item Type: | Thesis (Other) |
---|---|
Additional Information: | Ginanjar Rizqi Setiani (19552011012) |
Uncontrolled Keywords: | business intellegence, Extraction Transformation Loading, Online Analytical Processing, Artificial neural network business intelligence, Extraction Transformation Loading, Online Analytical Processing, Artificial Neural Networ |
Subjects: | Q Science > Q Science (General) |
Divisions: | Fakultas Matematika dan Ilmu Komputer (FMIKOM) > Prodi Informatika (INF) |
Depositing User: | Teguh Wibowo |
Date Deposited: | 16 Mar 2024 05:08 |
Last Modified: | 16 Mar 2024 05:08 |
URI: | http://eprints.unugha.ac.id/id/eprint/187 |